A bend, flip and trap mechanism for transposon integration
نویسندگان
چکیده
Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities.
منابع مشابه
A Novel Mechanism of Transposon-Mediated Gene Activation
Transposable Insertion Sequences (IS elements) have been shown to provide various benefits to their hosts via gene activation or inactivation under stress conditions by appropriately inserting into specific chromosomal sites. Activation is usually due to derepression or introduction of a complete or partial promoter located within the element. Here we define a novel mechanism of gene activation...
متن کاملImage flip CAPTCHA
The massive and automated access to Web resources through robots has made it essential for Web service providers to make some conclusion about whether the "user" is a human or a robot. A Human Interaction Proof (HIP) like Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) offers a way to make such a distinction. CAPTCHA is a reverse Turing test used by Web serv...
متن کاملEfficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons.
The derivation of germ-line competent avian primordial germ cells establishes a cell-based model system for the investigation of germ cell differentiation and the production of genetically modified animals. Current methods to modify primordial germ cells using DNA or retroviral vectors are inefficient and prone to epigenetic silencing. Here, we validate the use of transposable elements for the ...
متن کاملChromosomal transposition of PiggyBac in mouse embryonic stem cells.
Transposon systems are widely used for generating mutations in various model organisms. PiggyBac (PB) has recently been shown to transpose efficiently in the mouse germ line and other mammalian cell lines. To facilitate PB's application in mammalian genetics, we characterized the properties of the PB transposon in mouse embryonic stem (ES) cells. We first measured the transposition efficiencies...
متن کاملSecretion trap tagging of secreted and membrane-spanning proteins using Arabidopsis gene traps.
Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a beta-glucuronidase reporter enzyme that is inhibited by N-linked glycosylation sp...
متن کامل